Open on DataHub
# HIDDEN
# Clear previously defined variables
%reset -f

# Set directory for data loading to work properly
import os
os.chdir(os.path.expanduser('~/notebooks/20'))

Seaborn

Function Chapter Description
sns.lmplot(x, y, data, fit_reg=True) Data Visualization Create a scatterplot of x versus y from DataFrame data, and by default overlay a least-squares regression line
sns.distplot(a, kde=True) Data Visualization Create a histogram of a, and by default overlay a kernel density estimator
sns.barplot(x, y, hue=None, data, ci=95) Data Visualization Create a barplot of x versus y from DataFrame data, optionally factoring data based on hue, and by default drawing a 95% confidence interval (which can be turned off with ci=None)
sns.countplot(x, hue=None, data) Data Visualization Create a barplot of value counts of variable x chosen from DataFrame data, optionally factored by categorical variable hue
sns.boxplot(x=None, y, data) Data Visualization Create a boxplot of y, optionally factoring by categorical variables x, from the DataFrame data
sns.kdeplot(x, y=None) Data Visualization If y=None, create a univariate density plot of x; if y is specified, create a bivariate density plot
sns.jointplot(x, y, data) Data Visualization Combine a bivariate scatterplot of x versus y from DataFrame data, with univariate density plots of each variable overlaid on the axes
sns.violinplot(x=None, y, data) Data Visualization Draws a combined boxplot and kernel density estimator of variable y, optionally factored by categorical variable x, chosen from DataFrame data